Web application for Intensity of Erosion and Outflow

Name of the River Basin: Bistrica (kod Berana)

Country: Montenegro

Year: 2018

GPS coordinates, latitude and longitude with Google Maps: 42.833783,19.836532

INPUT DATA

Geometric characteristics of the river basins

F = 133.88747 km² (Surface area of the drainage basin)

O = 62.49592 km (Length of the watershed)

Fv = 80.94424 km² (Surface area of greater portion of the drainage basin)

Fm = 52.94323 km² (Surface area of smaller portion of the drainage basin)

Lv = 26.90531 km (Natural length of main water course)

Lb = 21.98716 km (Length of the drainage basin measured by a series of paraller lines)

Topograpfic characteristics of the river basins

Contour line length - Liz [km]: ["2.20982 ","6.71367 ","7.20292 ","19.79409 ","31.53289 ","41.96885 ","48.15472 ","63.55594 ","67.04959 ","73.48834 ","59.50381 ","49.90986 ","29.13672 ","16.76063 ","2.21565 "]

The area between the two neighboring contour lines - f [km²]: ["2.47489 ","1.44993 ","1.15302 ","3.48991 ","5.32819 ","8.18507 ","10.87748 ","14.87302 ","16.16024 ","17.61977 ","17.89506 ","14.90414 ","9.97085 ","6.48003 ","2.83956 ","0.18631 "]

h0 = 700 m (Altitude of the initial contour)

 $\Delta h = 100 \text{ m (Equidistance)}$

Hmin = 685 (Lowest altitude in the drainage basin)

Hmax = 2139 (Highest altitude in the draigane basin

Hydrological characteristics of the river basins

 $\Sigma L = 69.1736$ km (The total length of the main watercourse with tributaries of 1st and 2nd class)

Lm = 22.4919 km (The shortest distance between the fountain (head and mouth))

Water permeability

fp = 0.3166 (Part of the surface area of the drainage basin which is composed of highly water permeable structures from the rocks (limestone, sand, gravel))

fpp = 0.0501 (Part of the surface area of the drainage basin which is composed of the rocks of medium water permeability (schist, marls, sandstone))

fo = 0.6333 (Part of the surface area of the drainage basin which is composed of the rocks of poor water permeability (heavy clay, compact eruptive))

Land use

fs = 0.523996482 (Part of the surface area of the drainage basin under the forest)

ft = 0.444460878 (Part of the surface area of the drainage basin which is under the grass, meadows, pastures and orchards)

fg = 0.031542639 (Part of the surface area of the drainage basin which is bare or under the soils without grass vegetation)

Meteorological data

hb = 115 mm (Level of torrent rain)

Up (years) = 100

to = 9.0 °C (Average annual air temperature)

Hgod = 944.3 mm (Average annual quantity of precipitation)

Erosion coefficients

Y = 1.06969 (Types of soil structures and allied types)

3.21 % (Sand, gravel and incoherent soils)

0 % (Saline soils)

0 % (Decomposed limestone and marls)

74.92 % (Serpentines, red sand stones, flishe deposits)

```
0 % (Podzols and parapodzols, decomposed schist)
6.49 % (Solid and Schist limestone, Terra Rosa and Humic soil)
15.37 % (Brown forest soils and Mountain soils)
0 % (Epieugleysol and Marshlands)
0 % (Good structured Chernozems and alluvial well-structured deposits)
0 % (Bare, compact igneous)
Xa = 0.45767 (Planning of the drainage basin, rate of drainage basin regulation)
0.01 % (Bare lands)
3.15 % (Plough-lands)
1.04 % (Orchards and vineyards)
24.61 % (Mountain pastures)
18.79 % (Meadows)
31.44 % (Degraded forests)
20.96 % (Well-constituted forests)
\phi = 0.368575 (Numerical coefficient of visible and clearly pointed processes of soil erosion)
6.33 % (Depth erosion)
5.63 % (80% of the river basin under rill and gully erosion)
4.92 % (50% of the river basin under rill and gully erosion)
4.22 % (100% of the river basin under surface erosion)
18.79 % (100% of the river basin under surface erosion, without visible furrows, ravines and
land slides)
2.11 % (50% of the river basin under surface erosion)
1.41 % (20% of the river basin under surface erosion)
0.01 % (There are smaller slides in the watercourse beds)
3.15 % (The river basin mostly under plough-land)
53.44 % (The river basin under forests and perennial vegetation)
INPUT DATA
```

A = 0.45294792737939 (Coefficient of the river basin form)

m = 0.65593846742225 (Coefficient of the watershed development)

B = 6.0893480558653 km (Average river basin width)

a = 0.41827678124025 ((A)symmetry of the river basin)

G = 0.51665476986009 (Density of the river network of the basin) **K** = 1.196222195546 (Coefficient of the river basin tortuousness) $H_{sr} = 1489.5333063654 \text{ m}$ (Average river basin altitude) D = 804.5333063654 m (Average elevation difference of the river basin) $I_{sr} = 38.778647471642 \%$ (Average river basin decline) H_{leb} = 1454 m (The height of the local erosion base of the river basin) $E_r = 136.05971285542$ (Coefficient of the erosion energy of the river basins relief) $S_1 = 0.79501$ (Coefficient of the regions permeability) $S_2 = 0.7015092306$ (Coefficient of the vegetation cover) W = 1.2550973659666 m (Analytical presentation of the water retention in inflow) $2gDF^{1/2} = 1453.7558754517 \text{ m km s}^{-1}$ (Energetic potential of water flow during torrent rains) $Q_{max} = 460.91745924746 \text{ m}^3 \text{ s}^{-1}$ (Maximal outflow from the river basin) Z = 0.48530582590298 (Coefficient of the river basin erosion)

T = 1 (Temperature coefficient of the region)

 $W_{god} = 134283.62442727 \text{ m}^3 \text{ god}^{-1}$ (Production of erosion material in the river basin

 $R_u = 0.38427221591528$ (Coefficient of the deposit retention)

 $G_{god} = 51601.465919802 \text{ m}^3 \text{ god}^{-1} \text{ (Real soil losses)}$

 G_{god} km⁻² = 385.40922402822 m³ km⁻² god⁻¹ (Real soil losses per km²)

http://www.wintero.me